【摘要】为了实现准确可靠的涡轮分子泵故障诊断,提出了一种基于多样性特征和多源信息的分子泵故障诊断方法。在分子泵实验台上采集到分子泵不同故障下多个测点的振动信号,经过预处理后随机分为训练集和测试集。首先通过改变激活函数形成多个去噪自编码器,之后利用生成的深度自编码器对数据集进行多样性特征提取,最后将提取到的特征用于训练支持向量机(SVM)进行故障分类。实验结果表明该方法可以实现分子泵的准确故障诊断,准确率达到98.9%,而且在训练集不平衡或高背景噪声情况下依旧表现良好。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《当代体育科技》 2015-07-07
《铁道运营技术》 2015-06-25
《重庆高教研究》 2015-06-30
《现代制造技术与装备》 2015-07-06
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点